If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5t^2-12t-65=0
a = 5; b = -12; c = -65;
Δ = b2-4ac
Δ = -122-4·5·(-65)
Δ = 1444
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1444}=38$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-38}{2*5}=\frac{-26}{10} =-2+3/5 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+38}{2*5}=\frac{50}{10} =5 $
| -3x=14-(-16) | | 11h-10h-1=13 | | 11=3(p+5)–7 | | 3x+2+3x+2=22 | | -x-73=-5x+23 | | 7q=16q-18 | | 2v/3+8=20 | | 5+2x+x=80 | | 9|y|+17=53 | | 3-8(x+6)=4(x-1)-3 | | 5(7c-1)-12=33c+5 | | 9x-121=103-5x | | 7q=16q–18 | | -12k+13=-1+2k | | 2x-x=5x+1 | | 10x+23(x-3)=228 | | -245p=-8(6p+3) | | v/2+3=27 | | -1/2x=-x+5 | | 4(n+10)+5=9 | | 4(n+10)–-5=9 | | 355-5a=60a | | 4(h-19)-13=-13 | | 7w+6-2(-6w-1)=7(w-1) | | 16b-15b+5b=-12 | | 10x-2=4x+1 | | -4(2w+6)=-32 | | F(x)=2x2+1 | | 4(x+5)-5=8x+182 | | -5p-6=-10(-4p+3)-6(3+7p) | | 26y^2+5y+156=0 | | 6c+18=30 |